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Abstract
Wild salmon are essential to the ecological, eco-
nomic, and cultural sustainability of the North Pa-
cific Rim. Sustaining their populations requires ef-
fective fisheries management, which remains chal-
lenged by climate variability, habitat loss, and lim-
itations in data collection and analytics, particu-
larly in remote ecosystems with limited infrastruc-
ture. This research project explores the integra-
tion of multimodal foundation AI and expert-in-
the-loop frameworks to enhance wild salmon mon-
itoring and sustainable fisheries management in In-
digenous rivers across Pacific Northwest. With
video- and sonar-based monitoring, we develop AI-
powered tools for automated species identification,
counting, and length measurement, reducing man-
ual effort, expediting result delivery, and improv-
ing decision-making accuracy. Expert validation
and active learning frameworks ensure ecological
relevance while reducing annotation burdens. To
address unique technical and societal challenges,
we bring together a cross-domain, interdisciplinary
team of university researchers, fisheries biologists,
Indigenous stewardship practitioners, government
agencies, and conservation organizations. Through
these collaborations, our research fosters ethical AI
co-development, responsible data sharing, and cul-
turally informed fisheries management.

1 Problem Statement
Wild salmon are integral to the social-ecological systems of
the North Pacific Rim. For over 10,000 years, they have
supported thriving fisheries [Yoshiyama, 1999; Carothers et
al., 2021], sustained local economies, enriched cultures, and
maintained ecological balance [Walsh et al., 2020; Earth
Economies, 2021]. Yet rapid environmental changes driven

by climate variability are threatening the resilience of salmon
ecosystems [Waples et al., 2008; Di Lorenzo and Man-
tua, 2016; Frölicher and Laufkötter, 2018]. Across their
range, wild salmon populations have declined significantly,
with increasingly unpredictable returns [Kilduff et al., 2015;
Dorner et al., 2018]. These declines pose significant threats
to their long-term sustainability and the communities, such as
Indigenous people, that depend on them [Atlas et al., 2021].

Sustaining salmon fisheries is further complicated by
mixed-stock fisheries, which indiscriminately harvest co-
migrating populations [Walters et al., 2008; Moore et al.,
2021], and by the high costs and logistical challenges of
monitoring in remote, roadless areas of the Pacific North-
west [Price et al., 2017]. These challenges have created the
need for adaptive AI models and systems that support in-
season management and selective terminal fisheries targeting
healthy populations [Atlas et al., 2021]. Such AI models and
systems can bolster ecosystem resilience and maintain pro-
ductivity through cycles of salmon abundance, even amidst
climate change [Schindler and Hilborn, 2015].

The initial effort to integrate computer vision and artificial
intelligence into salmon monitoring focused on video-based
weir systems aimed to expedite in-season fish counting [At-
las et al., 2023], a process traditionally requiring extensive
manual effort. Early approaches leveraged underwater RGB
cameras; however, the limitations of visual clarity and envi-
ronmental variability necessitated alternative sensing modal-
ities. Sonar-based monitoring emerged as a viable solution,
exemplified by efforts such as Caltech’s Fish Counting (CFC)
work [Kay et al., 2022], which introduced fish detection and
tracking in sonar videos. Unlike conventional Multi-Object
Tracking (MOT) datasets focused on urban environments,
CFC highlights the challenges of domain generalization in
low signal-to-noise underwater settings [Kay et al., 2024].
SALINA [Xu et al., 2024] further extended these efforts by
enabling real-time sonar analytics and energy-efficient de-
ployment, supporting sustainable fisheries management in re-
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Figure 1: (a) A salmon counting weir at Koeye River (in Heiltsuk First Nation’s traditional territory, northern British Columbia)
with salmon swimming passing the fish channel, (b) sample underwater video frames with salmon appearances, (c) object
segmentation with species identification.

(a) (b) (c) (d)

Figure 2: (a) A mounted ARIS sonar camera, (b) sonar deployment in the Yakoun River, Haida Nation’s traditional territory,
(c) sample frames from ARIS sonar, (d) salmon detection and tracking in sonar frames.

mote ecosystems within Indigenous territories.
Despite these advancements, new challenges and oppor-

tunities remain. Moving beyond basic fish object detec-
tion and tracking, there is a growing need to integrate fish-
ery management models and forecasting with motion-based
counting, length measurement, and AI-assisted decision-
making. Incorporating the newly developed vision founda-
tion model [Achiam et al., 2023; Liu et al., 2023] also helps
improve performance and generate timely, accurate insights.

For effective AI system deployment, ensuring reliable data
capture, sufficient energy availability, and stable long-term
operation is essential. However, the lack of basic infrastruc-
ture in the remote forests of the Pacific Northwest makes de-
ployments particularly challenging [Ma et al., 2024]. There-
fore, integrating the expertise of Indigenous stewardship
practitioners and fisheries biologists becomes even more crit-
ical to enhancing the system’s resilience and applicabil-
ity. Furthermore, expert-in-the-loop frameworks and cross-
referencing across multiple sensing modalities hold promise
for improving accuracy, robustness, and actionable insights
for sustainable fisheries management [Wu et al., 2022].

In response to this need, we formed an interdisciplinary
collaborative team to apply multimodal foundation AI and
co-develop expert-in-the-loop frameworks for: (1) automated
species identification and counting of salmon from video gen-
erated at salmon counting weirs, and (2) automated tracking,
counting, and length measurement from in-river sonar cam-
era units. As shown in Figures 1 and 2, these two domains
are complementary: video-based analysis can provide accu-
rate estimates of species abundance passing through a fixed
location, while sonar-based techniques can monitor salmon
across the entire river width without the need to build special-
purpose weirs and fish channels.

A key objective of this research project is to strengthen col-
laboration among university researchers, conservation practi-
tioners, and Indigenous communities who lead the steward-
ship of wild salmon within their territories. Insights from
multimodal data can enhance our shared capacity to detect,
interpret, and analyze salmon activity, deepening our under-
standing of species behavior such as run timing, abundance,
and year-to-year variation. These insights support broader
efforts to protect wild salmon and to better understand the
ecological and social factors shaping their health. Moreover,
data-informed improvements to fish passage and habitat con-
ditions can help address ongoing challenges related to biodi-
versity and ecosystem change.

2 Alignment with Sustainable Development
Goals and the LNOB principle

The United Nations’ 2030 Agenda for Sustainable Develop-
ment [United Nations, 2015] outlines 17 goals to promote
global prosperity, equality, and sustainability. A core prin-
ciple, Leaving No One Behind (LNOB) [United Nations,
2021], upholds the commitment that all communities, espe-
cially vulnerable groups, benefit from development efforts.
Wildlife conservation plays a crucial role in sustainability, af-
fecting both ecosystems and human livelihoods [Liu et al.,
2024; Gordon et al., 2023; Kshitiz et al., 2023]. This research
project, emphasizing wild salmon monitoring, management,
and conservation, aligns with several Sustainable Develop-
ment Goals (SDGs) as follows.

SDG 14: Life below Water. The multimodal foundation
AI for monitoring and conserving wild salmon aligns with
SDG 14.2 (“Protect and restore ecosystems”) by supporting
habitat preservation and ecosystem resilience. Meanwhile, it
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Prompt:  Identify the fish in this video frame and explain what features led you to that conclusion.

Vison Language Model: Likely a Chinook (king) salmon. Its large, robust body; silvery-bronze coloration; and dark jaw area are 
characteristic of Chinook. The early-summer timing also aligns with typical Chinook runs.

Expert Comments: It is a sockeye salmon, not a Chinook. Sockeye have no black spots on their back or tail and have lighter 
(white) gums, whereas Chinook usually show small black spots (especially on the tail) and have black gums.

Prompt:  Identify the fish in this video frame and explain what features led you to that conclusion.

Vison Language Model: This is a spawning-phase sockeye salmon. You can tell by the deep red body and grayish/greenish head 
(rather than bold vertical stripes or heavy spotting), which is characteristic of sockeye as they mature and enter fresh water to spawn.

Prompt:  why it is not a Chinook?

Vison Language Model: Because Chinook salmon (especially in spawning phase) typically show black spots on the back and both 
lobes of the tail, as well as a black gum line, none of which are evident here. Instead, this fish shows the uniform deep-red body and 
pale head typical of spawning-phase sockeye..

Figure 3: An off-the-shelf vision language model (e.g., OpenAI o1) can identify some cases but also makes errors,
thus requiring further refinement.

contributes to SDG 14.4 (“Regulate harvesting and end over-
fishing”) by enabling sustainable fisheries management and
aiding in the conservation of marine biodiversity.

SDG 15: Life on Land. Wild salmon sustain both aquatic
and terrestrial ecosystems. Their migrations transfer nutri-
ents to forests and wildlife. Declining populations disrupt
these cycles, affecting species such as bears and eagles. The
management and conservation efforts in this research project,
such as data-driven fish passage improvements and habi-
tat restoration, address biodiversity loss and degradation of
terrestrial and inland freshwater ecosystems (aligning with
SDGs 15.1 and 15.4).

SDG 17: Partnerships for the Goals. Sustainable salmon
conservation requires collaboration with government agen-
cies, Indigenous rights holders, and diverse stakeholders. In
this project, our interdisciplinary team includes Indigenous
communities, university researchers, conservation organiza-
tions, and industry partners. Integrating Indigenous knowl-
edge with modern technologies, such as AI-powered monitor-
ing, enhances conservation strategies and culturally informed
approaches. These efforts align with SDG 17.16 (“Strengthen
partnerships through knowledge and resource sharing”) and
SDG 17.17 (“Encourage multi-stakeholder collaborations”).

Alignment with LNOB. Wild salmon are essential to In-
digenous culture, economy, and food security, yet declin-
ing stocks exacerbate food insecurity and economic hardship.
LNOB promotes equitable conservation efforts by recogniz-
ing Indigenous communities as key decision-makers in man-
aging local salmon populations, strengthening co-governance
and long-term fishery access. AI-powered monitoring en-
hances data analytics and fisheries management, contributing
to ecosystem conservation. When integrated with traditional
Indigenous knowledge, AI supports more culturally grounded
policy development, strengthens sustainability initiatives, and
reinforces Indigenous sovereignty in conservation.

3 Strategies and Methods
To address key challenges in salmon monitoring and manage-
ment, we integrate multimodal foundation AI, scalable user-
centric system design, and collaborative governance. The
following subsections detail our methods for enhancing per-

ception across video and sonar data, supporting real-time de-
ployment in remote environments, and enabling responsible,
community-aligned data sharing and model development.

3.1 Multimodal Foundation AI for Monitoring
Wild salmon monitoring requires accurate species identifica-
tion, counting, and length measurement. Video-based and
sonar-based approaches offer complementary advantages, yet
each faces unique challenges. In this research project, we ex-
plore multimodal foundation AI to improve model accuracy,
reduce annotation burden, and enhance AI explainability.

Video-based monitoring at salmon counting weirs uses un-
derwater RGB cameras to capture detailed visual features, yet
occlusion, environmental variability, and data imbalance af-
fect accuracy [Khan et al., 2023]. Salmon frequently overlap
in dense aggregations, making single-camera detection unre-
liable. To address this, we leverage multi-view fusion, where
synchronized cameras or optical mirrors at different angles
provide complementary perspectives. This approach reveals
occluded fish objects and trajectories. Species identification
also suffers from data skew, particularly when rare species are
underrepresented. We apply data augmentation techniques
such as synthetic image generation and class-balanced sam-
pling [Cui et al., 2019] to mitigate dataset imbalance.

For low-confidence salmon detections and classifications
in videos, we leverage pre-trained vision language models
(e.g., LLaVA [Liu et al., 2023], GPT-4o [Zhong et al., 2024],
and OpenAI o1 [OpenAI, 2024]) that generate natural lan-
guage descriptions and species identifications. As shown in
Figure 3, while an off-the-shelf vision language model can
identify some cases, it also produces errors compared to ex-
pert feedback from fisheries biologists. Therefore, expert val-
idation is necessary to refine model predictions further. An-
other issue we identified during annotation for this domain-
specific task is that inexperienced annotators further intro-
duce labelling errors, thus reducing model reliability. To en-
hance annotation quality and model interpretability, we also
integrate vision language models into the annotation phase,
helping to minimize errors.

Sonar-based monitoring in rivers enables salmon detection,
tracking, and counting in turbid environments, but presents
challenges in noise reduction, spatial-temporal modeling, and
cross-modal integration [Xu et al., 2024]. Sonar data con-
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Figure 4: This research project supports SalmonVision & Selective
Fishery in multiple Indigenous rivers in British Columbia, Canada.

tains substantial background noise due to environmental fac-
tors such as water turbulence and reflections. In this project,
we employ deep learning-based denoising models [Garber
and Tirer, 2024; Chihaoui and Favaro, 2024] trained on
sonar datasets to enhance signal clarity. Existing sonar-based
tracking systems struggle with false positives and temporal
inconsistencies. To improve salmon tracking performance
across frames, we incorporate spatial-temporal features us-
ing Transformer-based architectures, which will be further
introduced in our implementation plan (Section 4.3). No-
tably, sonar frames alone lack species-level resolution, lim-
iting classification accuracy. To address this, we synchronize
sonar and video data when they are both available, integrating
features through early fusion techniques. By aligning spatial
and temporal cues with multimodal inputs, our approach en-
hances tracking and counting performance.

3.2 Scalable and User-Centric Framework Design
Scalability and real-time performance are critical for de-
ploying AI-powered monitoring across different Indigenous
rivers to generate in-season insights for fisheries manage-
ment. Both video and sonar data streams generate large vol-
umes of high-dimensional data, necessitating efficient pro-
cessing pipelines. Limited power, computation resources,
and network connectivity in the remote forests of the Pacific
Northwest further exacerbate challenges [Xu et al., 2024].
To this end, we have implemented a hybrid edge-cloud ar-
chitecture where lightweight models perform initial detec-
tion on edge devices, reducing computational demand and
transmission costs. More complex tasks, such as fine-grained
species classification and anomaly detection, are offloaded to
cloud servers. Such task offloading maintains computational
efficiency without sacrificing accuracy. To further improve
model adaptability, we incorporate continual learning mecha-
nisms that update model parameters based on multi-year data
while preserving previously learned patterns.

In summary, our framework design enables collaborative
edge–cloud operation while maintaining remote access for
diverse stakeholders. Edge-based computing allows imme-
diate fish detection at monitoring sites, even in locations with
limited internet connectivity. Meanwhile, cloud integration

supports large-scale data storage, remote model updates, and
collaborative access to processed data. We also explore fed-
erated learning [Liu et al., 2020], which enhances privacy
and Indigenous data sovereignty by enabling model improve-
ments without direct data transfer between monitoring sites.

Beyond system architecture, the adoption of AI-powered
monitoring tools also depends on usability. We design a user-
friendly application interface that enables Indigenous fish-
eries biologists to access real-time AI-generated insights with
minimal technical expertise. Standardized hardware and soft-
ware integration supports seamless deployment across dif-
ferent monitoring locations within Indigenous territories, as
shown in Figure 4. To further promote accessibility, we pro-
vide open-source documentation and training resources, al-
lowing fisheries practitioners to deploy and maintain the sys-
tem without specialized AI knowledge. By integrating scal-
able computing solutions with intuitive design, we create an
adaptive and inclusive monitoring framework that incorpo-
rates fisheries experts in the loop.

3.3 Collaboration and Responsible Data Sharing
for Effective Fisheries Management

Effective fisheries management relies on transparent pro-
cesses, cross-sector collaboration, and adaptive decision-
making. In this project, we work closely with government
agencies, Indigenous communities, and conservation organi-
zations to develop monitoring strategies that are both scien-
tifically rigorous and culturally informed. To support this col-
laboration, we share carefully selected non-sensitive datasets
and AI models for non-commercial use, in line with data gov-
ernance agreements and in consultation with partner Indige-
nous communities. These curated resources encourage inno-
vation in AI and fisheries science, while upholding ethical
standards and respecting data sovereignty.

By integrating multimodal foundation AI, real-time mon-
itoring systems, and expert-in-the-loop frameworks, we aim
to support a shift from data-limited, forecast-based fisheries
management to more adaptive, in-season decision-making.
This transition enables fisheries experts and managers to re-
spond dynamically to changing environmental conditions,
improving conservation outcomes and enabling sustainable
harvest opportunities when appropriate. Project findings will
be disseminated through peer-reviewed publications in both
AI and fisheries research communities. To support repro-
ducibility and technical collaboration, we plan to maintain
open-access repositories of code and selected non-sensitive
data1. All data releases will comply with established agree-
ments and be subject to review by partner communities.
Through responsible technology development and inclusive
partnerships, we contribute to a more resilient, data-informed
framework for wild salmon stewardship.

4 Implementation Plan
We implement our strategies and methods through a com-
bination of expert-in-the-loop workflows, multimodal model
integration, and deployment strategies tailored for video and
sonar-based salmon monitoring in remote environments.

1https://github.com/Salmon-Computer-Vision
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Figure 5: Vision language model verification and refinement.

4.1 Expert-in-the-Loop for Salmon Monitoring
Building on our previous work, we have developed the
SalmonVision web app2, which enables user-led data review
and annotation of salmon detection and classification results
generated on the edge. This research project extends that
groundwork by exploring multimodal foundation AI to trans-
form video and sonar data into actionable insights for salmon
monitoring, also emphasizing the critical role of human ex-
pertise in the loop. We are currently enhancing SalmonVision
web app to include the following features: 1) data collected
from different monitoring sites within Indigenous territories
is processed using advanced AI models capable of integrat-
ing multiple modalities, 2) AI-generated outputs (detections,
counts, and species classifications) are further refined through
experts’ multimodal input, including dot annotations, bound-
ing boxes, and text prompts.

The AI-human collaborative workflow ensures that expert
knowledge informs every stage of the process. Fisheries ex-
perts contribute their domain expertise by validating and en-
hancing annotations and AI-generated outputs, creating a rich
dataset of labeled frames for AI model refinement. This it-
erative process strengthens AI models’ ability to generalize
and perform reliably in real-world conditions, enabling them
to better adapt to the unique environmental characteristics
of each monitoring site within Indigenous territories. Once
refined, the AI models are updated on edge-computing sys-
tems installed at monitoring sites. These systems operate au-
tonomously to analyze incoming data in real time, but the
process remains firmly anchored by human oversight. Fish-
eries practitioners provide ongoing feedback and technical
support to support continuous system operation and data ac-
curacy throughout the monitoring season.

4.2 Video-based Salmon Detection, Classification,
and Counting

The existing system at our salmon counting weir employs
single-modality models such as YOLO [Wang et al., 2024]
and RT-DETR [Zhao et al., 2024] for salmon detection, clas-
sification, and counting. While these models achieve reason-
able performance, they struggle with cases involving occlu-

2https://salmonvision.org/
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Figure 6: Traditional preprocessing of sonar frames.

sions, poor lighting, or rare species due to their reliance on
visual features alone. Misclassifications and low-confidence
detections introduce errors that require extensive manual veri-
fication. To address these limitations, we incorporate a vision
language model (VLM) that enhances explainability and in-
tegrates additional modalities, improving both detection and
classification accuracy and expert review efficiency.

As shown in Figure 5, our implementation leverages a
VLM to refine low-confidence cases where the confidence
scores of the base detection and classification model are low.
Instead of relying solely on pixel-based features, the VLM
generates descriptive textual explanations of its predictions,
providing interpretable insights into classification decisions.
This process involves prompt engineering to guide the model
in handling specific challenges, such as distinguishing be-
tween visually similar species. When uncertainty remains
high, both the text-based explanations and the corresponding
video frames are flagged for expert review. By combining hu-
man expertise with model-driven reasoning, we facilitate the
correction of misclassifications and their incorporation into
the model’s continuous learning process.

As expert-reviewed frames accumulate, the refined VLM
progressively improves its performance, reducing reliance on
manual verification over time. The overall system transitions
from a semi-automated workflow to a fully automated one
powered by multimodal foundation model, capable of replac-
ing single-modality approaches. This shift enhances scalabil-
ity by enabling high-accuracy fish monitoring with minimal
human intervention.

4.3 Sonar-based Monitoring
The current sonar-based monitoring system in Indigenous
rivers relies on traditional preprocessing techniques to en-
hance image quality for expert review and AI inference, as
shown in Figure 6. However, these preprocessing methods of-
ten introduce frame distortion and feature loss, degrading the
performance of downstream tasks such as salmon detection,
tracking, counting, and length measurement. To address these

Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25)
Special Track on AI and Social Good

9958



One fish swims 
across the FOV

Time

H
ei

gh
t

Weaker 
echo

Echogram: spatial and 
temporal compilation

Width

Sonar 
Frame: FoV

H
ei

gh
t

Figure 7: Sonar frames and echogram, as two different modalities.

M
ul

tim
od

al
 M

od
el

Sonar Frames

Echogram

Fish Detection

Fish Tracking & 
Counting

Text
"Expert Comments"

Frozen Layers Attention Rearrangement

Length Measure

Encoder
Encoder

Encoder

Figure 8: Multimodal foundation model for sonar domain.

challenges, we propose adapting SAM2 model [Ravi et al.,
2024], a recently published foundation model for these down-
stream tasks with multimodal inputs, including sonar frames
and echograms. As shown in Figure 7, a sonar echogram
is a time-series visualization of sonar returns, representing
how acoustic signals interact with underwater objects and the
riverbed over time. The echogram serves as a key multimodal
input, providing both spatial and temporal information to the
adapted foundation model. By integrating echograms with
sonar frames, we improve robustness against noise and en-
hance the performance of downstream tasks.

The first phase of our implementation focuses on inte-
grating multimodal data to improve representation learning.
Sonar frames and echograms are fused to create a more com-
prehensive input representation. To suppress noise while pre-
serving critical information, we employ a lightweight foun-
dation model such as CLIP [Radford et al., 2021] to encode
sonar frames and echograms into token representations. Un-
like traditional denoising techniques, this approach reduces
artifacts and prevents loss of essential details.

The second phase focuses on adapting the multimodal
SAM2 model to sonar-specific tasks and improving perfor-
mance through fine-tuning. A labeled dataset of sonar frames
and echograms, annotated with salmon appearances, posi-
tions, and length estimates, is prepared for training.

We apply transfer learning to the adapted SAM2 model,
freezing early layers while fine-tuning later layers for sonar
data. As shown in Figure 8, sonar frames and echograms
are processed through separate encoders, facilitating effec-
tive multimodal integration. The extracted features are com-
bined using attention-based fusion, incorporating expert com-
ments as additional inputs when available. This structured fu-

sion approach enhances the model’s ability to generalize un-
der varying noise and environmental conditions, improving
its adaptability to real-world sonar data.

For salmon detection, the adapted SAM2 model generates
segmentation masks or bounding boxes, refined using non-
maximum suppression (NMS) to remove redundant predic-
tions. Salmon tracking and counting are further performed
using DeepSORT [Wojke et al., 2017], which combines mo-
tion and appearance features to ensure stable object associa-
tion across frames. Centerline extraction is conducted using
skeletonization algorithms [Hao et al., 2015], which refine
fish contours for improved structural analysis. Length mea-
surement is achieved through attention-based feature rear-
rangement, where extracted features are mapped to real-world
metrics using known scaling factors. This approach ensures
robust and accurate analysis of salmon instances in challeng-
ing underwater environments by leveraging both sonar frames
and echogram signals.

5 Evaluation Criteria
5.1 Video-Based Salmon Species Identification and

Counting
For species identification, we evaluate multi-class classifica-
tion performance using mean Average Precision at IoU 0.5
(mAP@50) and F1 score [Goodfellow, 2016]. These metrics
assess precision and recall, with robustness across different
species. We compare our VLM-enhanced identification re-
sults against baseline performance of single-modality models
such as YOLO [Wang et al., 2024] and RT-DETR [Zhao et
al., 2024], measuring improvements in classification perfor-
mance. For salmon counting, we assess the counting accu-
racy using Mean Absolute Percentage Error (MAPE) and F1
score, which represents reliable enumeration in dense and oc-
cluded scenarios. Our approach is benchmarked against stan-
dard detection-based counting models, with improvements
evaluated in terms of both precision and computational ef-
ficiency. We also compare VLM-enhanced species counts to
expert-reviewed species counts to provide insight into VLM-
enhanced salmon counting in real-world deployments.
Preliminary Results. Initial experiments were conducted
on a subset of annotated video data from two Indigenous
monitoring sites. The VLM-enhanced species identification
model achieved an mAP@50 of 81.2%, compared to 72.5%
from the YOLO baseline. The average F1 score improved
from 0.76 to 0.83, particularly benefiting rare species with
limited training examples. For salmon counting, our method
reduced the Mean Absolute Percentage Error (MAPE) from
18.7% (YOLO baseline) to 11.4%, with consistent improve-
ments across both high-density and occluded scenes. These
preliminary results demonstrate the potential of our approach
in improving both accuracy and reliability in real-world
salmon monitoring deployments.

5.2 Sonar-Based Salmon Monitoring
For sonar-based salmon detection performance, we also re-
port mAP@50 and mAP@50:75, with the latter further cap-
turing precision-recall trade-offs across different IoU thresh-
olds. These metrics quantify the effectiveness of our multi-
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modal approach in handling sonar-specific challenges such as
substantial noise and low contrast. We compare against tradi-
tional contour-based methods and state-of-the-art baselines,
including CFC-YOLO [Kay et al., 2022], RT-DETR [Zhao et
al., 2024], and STSVT [Xu et al., 2024].

For tracking evaluation, we employ Multiple Object Track-
ing Accuracy (MOTA [Bernardin and Stiefelhagen, 2008]),
Higher Order Tracking Accuracy (HOTA [Luiten et al.,
2021]), and IDF1 [Ristani et al., 2016] as benchmarks.
MOTA quantifies the trade-off between missed detections,
false positives, and identity switches, while HOTA incorpo-
rates temporal consistency and object association. IDF1 eval-
uates the accuracy of maintaining consistent object identities
over time. For salmon counting, we evaluate numerical ac-
curacy using Mean Average Error (MAE) and Root Mean
Squared Error (RMSE), comparing the model with expert
counts. For salmon length estimation, we apply similar MAE
and RMSE metrics to measure the deviation between model-
predicted and manually measured salmon lengths. Evalua-
tions are also conducted against expert-reviewed sonar data
to validate its reliability in real-world deployment. These cri-
teria support reliable assessment and practical deployment of
our adapted model in Indigenous monitoring settings.

6 Expected Results and Impacts
Diverse foundation models with multimodal inputs are trans-
forming society at an unprecedented rate; however, these AI
models have rarely been co-developed with local or Indige-
nous communities. In this research project, we co-develop AI
models in collaboration with Indigenous communities, gov-
ernment agencies, and conservation practitioners across the
North Pacific Rim. Our work aims to create lasting ben-
efits for fisheries management and conservation while sup-
porting equitable co-governance, empowering communities
as decision-makers and stewards of local salmon populations.

Across the Pacific Northwest, thousands of locally adapted
wild salmon populations remain unmonitored, despite being
actively targeted in ongoing fisheries across marine and fresh-
water ecosystems. In an era of rapid climate change with
no historical precedent, our work advances fisheries man-
agement by integrating multimodal foundation AI, real-time
monitoring, and expert validation to enable adaptive, data-
driven decision-making. Enhanced accuracy in fish popula-
tion assessments will strengthen conservation strategies, es-
tablish management benchmarks for previously data-limited
populations, and mitigate overfishing risks while supporting
sustainable harvest opportunities.

Sharing our datasets and models will accelerate research
and innovation, fostering collaboration across AI, fisheries
science, and conservation communities. Our cross-domain,
interdisciplinary team will ensure that monitoring strategies
are both scientifically rigorous and culturally relevant, en-
abling the translation of research into actionable fisheries
management outcomes. By shifting from preseason forecast-
ing to adaptive in-season management, this research project
will provide resilient, responsive tools for the sustainable
management of wild salmon fisheries in an increasingly dy-
namic environment.

7 Assumptions and Risks
Applying multimodal foundation AI to wild salmon monitor-
ing and fisheries management is an emerging area with inher-
ent risks. In particular, model performance for automated de-
tections, tracking, counting, and length measurement across
different sites remains uncertain, requiring multiple iterations
of training and testing to meet fisheries management stan-
dards. However, our preliminary results and deployment ex-
periences suggest that automated model analysis is not only
feasible but also critical for efficiently reviewing multimodal
data. To mitigate these risks, we incorporate multiple rounds
of data annotation, model training, testing, expert verification,
and refinement to iteratively improve performance.

In addition, careful attention to data ownership and AI-
related risks is essential to the ethical co-development of mul-
timodal foundation AI with Indigenous communities. To ad-
dress these concerns, we follow an iterative co-development
process in which partner First Nations receive regular up-
dates, contribute input on research outcomes and tool de-
velopment, and have their priorities and concerns addressed
throughout. Data-sharing agreements are established be-
tween our team and each partner Indigenous community.
These agreements safeguard community ownership of raw
data outputs while allowing access to labeled, non-sensitive
data for model training. Communities retain the right to with-
draw from these agreements at any time and request the re-
moval of their data from shared repositories. To date, no com-
munity has exercised this option.

Ethical Statement
This research is grounded in ethical, inclusive, and cultur-
ally respectful practices. We actively collaborate with Indige-
nous communities to ensure that fisheries monitoring strate-
gies incorporate traditional ecological knowledge and up-
hold Indigenous data sovereignty. All data collection and
analysis will follow established ethical guidelines, includ-
ing consent-based participation and transparent data use. We
prioritize fair representation by ensuring that all stakehold-
ers—including Indigenous communities, government agen-
cies, and conservation organizations—are equitably involved
in decision-making and share in the benefits of the research.

In addition, we adhere to responsible AI principles, en-
suring that models are interpretable, unbiased, and aligned
with conservation goals. By promoting responsible collab-
oration and ethical data governance, this research supports
sustainable fisheries management while upholding scientific
integrity and social responsibility.
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