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Abstract

Sonar radar captures visual representations of underwater objects

and structures using sound wave reflections, making it essential

for exploration, mapping, and continuous surveillance in wild

ecosystems. Real-time analysis of sonar data is crucial for time-

sensitive applications, including environmental anomaly detection

and in-season fishery management, where rapid decision-making is

needed. However, the lack of both relevant datasets and pre-trained

DNN models, coupled with resource limitations in wild environ-

ments, hinders the effective deployment and continuous operation

of live sonar analytics.

We present SALINA, a sustainable live sonar analytics system

designed to address these challenges. SALINA enables real-time pro-

cessing of acoustic sonar data with spatial and temporal adaptations,

and features energy-efficient operation through a robust energy

management module. Deployed for six months at two inland rivers

in British Columbia, Canada, SALINA provided continuous 24/7 un-

derwater monitoring, supporting fishery stewardship and wildlife

restoration efforts. Through extensive real-world testing, SALINA

demonstrated an up to 9.5% improvement in average precision and

a 10.1% increase in tracking metrics. The energy management mod-

ule successfully handled extreme weather, preventing outages and

reducing contingency costs. These results offer valuable insights

for long-term deployment of acoustic data systems in the wild.

CCS Concepts

• Computer systems organization → Embedded and cyber-

physical systems; • Computing methodologies→ Artificial

intelligence.
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1 Introduction

Sonar radar employs sound wave reflections to visualize objects

and structures within its detection range. This technology proves

invaluable across a wide range of sensing applications, including

underwater exploration and mapping, continuous surveillance, and

studying marine life [3, 15]. Typical analytical tasks include object

detection [34], counting [17, 22, 32], and trajectory tracking [7,

14]. With advancements in sonar technology and AI-empowered

data processing, the demand for real-time sonar data analysis has

significantly increased, particularly in time-sensitive applications

such as environmental anomaly detection and in-season fishery

management. In these contexts, timely and accurate sonar analytics

can greatly enhance fast response efforts, enabling more effective

decision-making.

Despite decades of research, achieving live and accurate sonar

analytics remains challenging due to several factors. Sonar radars

are often deployed in environments where optical cameras are

ineffective due to low or zero visibility, such as underwater. As

shown in Figure 1, objects such as fish, wild animals, and intruders

frequently appear small and blurry in sonar frames, complicating

typical analytics tasks [1]. Additionally, sonar data typically exhibit

limited diversity and suffer from significant noise, with insufficient

texture details necessary for effectively training and fine-tuning

deep neural networks (DNNs) [19].

Another challenge is balancing data fidelity and freshness in live

sonar analytics [36, 37, 39]. Sonar data is rich in information by

nature. Unlike modern embedded cameras with built-in process-

ing capabilities [42], off-the-shelf sonar radars generate raw echo

frames and basic sensory data, requiring reliable edge infrastructure

for further processing. Without efficient handling, this results in

substantial overhead and degrades overall analytics performance.

In addition, unlike urban surveillance scenarios with robust net-

work infrastructure, sonar radar is often deployed in wild ecosys-

tems with limited network coverage and energy resources. Field

studies in North America showed that individuals and agencies rely
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(a) (b)

Figure 1: (a) a mounted ARIS sonar radar, (b) sample

frames from ARIS sonar.

Figure 2: Sonar radar and edge devices deployed in off-

grid temperate forest.

on satellite internet providers, such as SpaceX’s Starlink [6, 44],

for accessing computing power to process streamed sonar data.

However, Starlink’s peak power consumption of up to 200 Watts is

double that of the sonar radar system’s 100 Watts. In these areas,

sustainable energy sources such as solar power are typically the

only viable option. As shown in Figure 2, the temperate forest envi-

ronment exacerbates the challenge, as changing weather conditions,

sudden storms, and cloud cover significantly impact energy avail-

ability. Therefore, unique energy and network characteristics must

be considered when designing sustainable and enduring solutions

for live sonar analytics.

In this work, we pose the following question: "Can a live sonar

streaming and analytics system be developed to operate effectively

under the extreme constraints of wild ecosystems?" We anticipate that

an affirmative answer will offer insights for the long-term operation

of similar systems on processing generalized acoustic data.

To address this question, we developed SALINA for SustAinable

LIve soNar Analytics, in close collaboration with a multidisci-

plinary team of biologists, forest technologists, and electricians.

SALINA’s novelty lies in three key aspects: sonar data channel

population, DNN model enhancement with spatial-temporal feature

adaptations, and sustainable sonar streaming and energy planning.

The sonar data channel population ensures robust data perception

of both human and machine intelligence, while the DNN model

enhancement incorporates spatial-temporal feature adaptations to

further improve analytics performance in challenging conditions.

Additionally, edge-cloud collaboration is leveraged during inference

to balance accuracy and power efficiency. Furthermore, the energy

planning module is designed to handle volatile weather patterns,

such as sudden storms and fluctuating cloud cover, ensuring con-

tinuous operation while maintaining resource efficiency in rapidly

changing environments.

SALINA was deployed for six months at two inland river sites

in British Columbia, Canada, located deep within temperate forests

and operating entirely off-grid, relying solely on sustainable so-

lar power. It provided continuous 24/7 underwater monitoring to

support the strategic planning of the First Nations’ fishery stew-

ardship and wildlife restoration efforts. The analytics results also

contributed to biological research on tracking North American At-

lantic salmon. Extensive real-world experiments showed SALINA’s

superiority, with up to 9.5% improvement in average precision and

10.1% improvements in tracking metrics when monitoring under-

water objects. The energy planning module effectively schedules

energy usage, preventing system outages due to extreme weather

conditions and saving considerable contingency costs. Our contri-

butions can be summarized as follows.

• We developed the first known system for real-time process-

ing and analysis of acoustic sonar data, incorporating edge

and cloud collaboration for live analytics in wild ecosystems.

• We addressed unique challenges in sonar analytics by con-

structing a novel channel population pipeline to resolve is-

sues such as acoustic shadow and reverberation, improving

detection and tracking accuracy.

• Through reconstructing data channels and finetuning pre-

trained DNN models, we observed improved detection and

tracking performance, compared to state-of-the-art meth-

ods [15] on three benchmarking datasets.

• SALINA’s sustainable sonar streaming and energy planning

module is explicitly designed to withstand volatile weather

patterns, such as sudden storms and fluctuating cloud cover,

ensuring continuous operation and resource efficiency in

rapidly changing environments.

• The sonar dataset used in this study has been organized and

released for community use, with the potential to generate

new insights and discoveries that benefit society.

The remainder of this paper is outlined as follows:

Section 2 presents comprehensive backgrounds and research

motivations, discussing the sonar analytics characteristics and chal-

lenges; Section 3 introduces the SALINA architecture and its design

overview; Section 4 details the data preprocessing and wrangling

techniques; Section 5 describes the DNN model adaptations for

both on-premise and cloud inference; Section 6 explains the sonar

streaming and energy planning design; Section 7 provides system

evaluations; Section 8 offers further discussion and Section 9 con-

cludes the paper.

2 Background and Motivations

In this section, we introduce the background, opportunities, and

challenges in developing live sonar analytics in wild ecosystems.

2.1 Sonar Frame Capture

In this work, we focus primarily on data analytics of multi-beam

sonar. In contrast to passive sonar and side scan sonar [38], multi-

beam sonar works by emitting multiple beams of sound waves from

a transducer, which is mounted on a fixed rack or towed behind a
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Figure 3: Unique observations in sonar frames. The left image shows reverberation effects (elongated curves) and pervasive

speckle noise. The right images display three consecutive frames (F1, F2, and F3) illustrating the moving acoustic shadow

caused by a coho salmon. The ghost objects are shown as stacked highlighted areas above the fish.

boat. Each sonar frame visualizes the reflected intensity of these

beams, providing clear underwater imagery even in low-visibility

conditions. This enables effective detection of aquatic life, mapping

of structures, and monitoring of submerged assets, making it suit-

able for real-time underwater exploration and analysis. As shown

in Figures 1b and 3, the frames are typically presented in grayscale

or false-color, where lighter areas indicate stronger reflections or

denser objects, and darker areas represent weaker reflections or

softer, less dense materials.

2.2 Characteristics of Live Sonar Analytics

Emerging demand for real-time feedback. Advancements in

sonar technology and AI-driven data processing have created a

growing need for real-time feedback in applications such as envi-

ronmental anomaly detection and in-season fishery management,

where timely insights are crucial for effective decision-making.

For example, during the salmon return season, real-time sonar

monitoring enables fishery programs to track populations, assess

environmental impacts, and adjust operations promptly, ensuring

compliance with regulations and sustainable harvests. Without live

sonar data, decisions would rely on delayed or less accurate infor-

mation, potentially leading to poor management and environmental

risks. Despite these benefits, achieving both high data fidelity and

freshness in live sonar analytics remains challenging [36, 37, 39].

Beyond fishery management, live sonar analytics can support in-

trusion detection and disaster management, providing precise and

timely insights to adapt to diverse scenarios and dynamics.

Lack of quality dataset and pre-trained models. Compared

to conventional computer vision detection and tracking (D&T)

tasks, identifying and continuously tracing objects in sonar data

is inherently challenging. Objects in real-world scenarios, such as

fish, wild animals, and intruders, often appear small and blurry in

echo frames [1]. In addition, underwater datasets typically have

limited diversity, and real-world samples are accompanied by het-

erogeneous noise and lack texture details [19], making it difficult to

train and fine-tune DNN models for D&T tasks. Furthermore, there

are only a few publicly available datasets for pre-training, partly

due to the limited number of research teams focusing on this area.

Noises cause detection loss. Compared with environmental

noise, gaussian noise, and motion blur which are commonly seen

and handled in conventional video analytics systems, speckle noise

is a type of granular noise that frequently appears in images or

signals acquired through coherent imaging systems such as sonar

radar. It arises due to interference between coherent wavefronts

and varies with the relative positions of the object and sensor. As

shown in Figure 3, it manifests as random fluctuations in brightness

or intensity, creating a grainy or speckled appearance. In sonar

analytics, such noises can adversely affect D&T tasks, leading to a

loss of accuracy or degraded performance.

Acoustic shadows and reverberations. Additionally, acoustic

shadows and reverberations caused by sound waves can further

complicate object observation by obscuring object presence. For

example, when placed underwater, the interaction of sound waves

bouncing back and forth between the river bottom and the water

surface before reaching the transducer generates multiple shifting

bottom images [15]. Consequently, this type of echo may produce

multiple images of individual objects, appearing offset from each

other, often referred to as "ghost objects". A typical example is

presented in Figure 3, showing a moving acoustic shadow and

ghost objects caused by a Coho salmon in sonar frames.

Furthermore, we also illustrate the form of acoustic shadows in

Figure 4. In this figure, the objects closer to the sonar radar have

larger acoustic shadows in the sonar frame, while those farther

from the radar and closer to the bottom have smaller shadows.

Such acoustic shadows can potentially interfere with the detection

and tracking of other objects. Note that the presence and intensity

of these ghost objects can vary based on factors such as the river’s

shape, sonar radar orientation, and water level. These factors de-

termine how much these visual anomalies distort the perceived

location and size of objects in the sonar frame, potentially leading

to inaccurate object detection or misclassification. To improve mon-

itoring and research accuracy, it is crucial to quantify the impact
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Figure 4: Acoustic shadows in sonar frames.

of these acoustic properties and develop methods to mitigate their

effects on visual data interpretation.

2.3 Deployment Challenges

Limited compute power and energy constraints at the first

mile. Sonar data contains a vast amount of information that needs

to be processed in real time. In contrast to modern embedded IP

cameras that equip powerful processing units, off-the-shelf sonar

radar only outputs raw echo frames and other basic sensory sta-

tus data. This necessitates a reliable edge infrastructure to handle

data pre-processing and wrangling. Possible edge designs include

deploying lightweight models on low-power devices, offloading

computationally intensive tasks to cloud servers, and employing

data compression techniques to reduce transmission costs. Without

these optimizations, processing overheads can degrade overall sys-

tem performance. Note in wild environments, sustainable energy

sources such as solar power are typically the only viable option.

The changing weather conditions, sudden storms, and cloud cover

significantly impact energy availability, posing challenges in con-

tinuous operation and maintenance.

Thin network coverage in the wild.Unlike urban surveillance

scenarios [12, 43], which benefit from well-established network in-

frastructure, sonar radar is often deployed in wild environments

with limited network coverage [25]. Geographic factors such as

mountains, dense forests, or other natural obstacles can obstruct net-

work signal transmission, further reducing coverage. In these areas,

individuals and agencies often rely on satellite internet providers,

such as SpaceX’s Starlink, for connectivity. Therefore, these unique

network constraints must be carefully considered when designing

and developing a live sonar analytics system.

3 SALINA Overview

Considering the unique characteristics and challenges in sonar

analytics, we present SALINA, a sustainable live sonar analytics

system. The major modules of SALINA are presented in Figure 5,

which we will detail further.

3.1 Data Preprocessing and Wrangling

In this work, we employ advanced data preprocessing and wran-

gling techniques to enhance live sonar analytics. By converting

Figure 5: Module design.

acoustic intensity measurements to a grayscale frame, we facili-

tate the use of various image processing methods to populate data

channels for deep neural network (DNN) models to work on down-

stream tasks. For example, for real-time background subtraction,

we utilize the Mixture of Gaussians (MOG) method [33, 47], which

models the background using multiple Gaussian distributions per

pixel. This approach adapts dynamically to scene changes, ensuring

efficiency and robustness.

Additionally, we propose a novel hedging design to utilize back-

ground removal data by creating three-channel outputs compatible

with conventional RGB formats. The first channel retains the origi-

nal sonar frame, while the second and third channels apply guided

filtering [11] with different guidance images. This strategy improves

the differentiation of noises and acoustic shadows, enhancing the

performance of detection and tracking tasks. By integrating these

preprocessing steps, our methodology ensures real-time processing

capabilities and significantly improves the accuracy of downstream

analytics. Further details are presented in Section 4.

3.2 Sonar Dataset Preparation

Due to the scarcity of public underwater sonar datasets, we devel-

oped custom datasets for training, fine-tuning, and benchmarking

purposes. In sonar analytics scenarios, visual similarities between

objects make it challenging to distinguish them based on appear-

ance alone, necessitating the use of motion and behavioral patterns

for effective tracking. This complexity is compounded by factors

such as intricate backgrounds, inconsistent frame-to-frame visi-

bility, and varying numbers of objects in the scene—issues that

are less common in controlled laboratory tracking studies. To ad-

dress these challenges, we hired a third-party annotation service

to collect multiple object-tracking annotations for all objects in

the converted sonar clips in grayscale. The objects include salmon,

otter, and smolt. Annotators were provided with the sonar frames

and instructed to tightly box all visible objects of interest using v7

software [18].
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The dataset was curated from three months of sonar clips ob-

tained from two distinct rivers. For the YK River, the dataset con-

tains 454,941 bounding boxes across 196,937 frames from 1,346

clips. This dataset was split into training and validation sets with

an 80/20 ratio. For the more challenging KN River, the training set

comprises 132,010 bounding boxes across 162,681 frames from 483

clips. The validation set consists of 18,551 bounding boxes across

30,521 frames from 65 clips.

3.3 DNN Model Adaptations

Section 5 explores DNN model adaptations for both on-premise

and cloud inference to generate sonar analytics results. The need

for both on-premise and cloud inference arises from the distinct

advantages each offers. On-premise inference offers edge-only pro-

cessing with immediate feedback, a low energy profile, and re-

silience to occasional network outages. In contrast, cloud infer-

ence provides greater computational power, enabling complex and

resource-intensive analyses with higher accuracy, assuming sta-

ble energy and network are available for data transmission to the

cloud. Leveraging both on-premise and cloud inference also ad-

dresses the heterogeneous settings of different sonar sites, where

device capabilities, energy availability, and network conditions vary

significantly in the wild.

We adopt Convolutional Neural Networks (CNN) for on-premise

inference, leveraging their modularity and anchor-free architecture

to reduce false positives in sonar data. For cloud inference, we adapt

the deformable detection transformer (DETR) [46] as our still sonar

frame detector. We simplify its design by excluding multi-scale

feature representations and concentrating on the last stage of the

backbone. The modified detector for sonar frames incorporates a

spatial transformer encoder and decoder, which encode each frame

into spatial object queries and memory encodings. Additionally, we

introduce a temporal transformer to enhance object detection by

leveraging temporal information between adjacent sonar frames,

performing co-attention between online queries and temporally

aggregated features. We refer to these adaptations for sonar data

as the Spatial-Temporal Sonar Vision Transformer (STSVT).

3.4 Sustainable Sonar Streaming

In Section 6, we introduce a joint design for sonar streaming and

energy planning. This integration is necessary because support-

ing cloud inference for better analytics accuracy requires sonar

streaming over satellite networks, which consumes the majority

of power in the entire system. Our design considers both weather-

affected Starlink connectivity and solar photovoltaic (PV) energy

production. We observe that Starlink’s throughput is significantly

affected by precipitation, with an average 15% drop during pre-

cipitation and notable reductions during heavy rain due to rain

attenuation affecting Ka- and Ku-band radio waves. Similarly, solar

PV energy production is highly sensitive to weather conditions. We

leverage a modified U-Net architecture for short-term solar PV out-

put forecast, incorporating residual blocks and pruning to enhance

efficiency. Our multi-stratum streaming optimization integrates

satellite communication performance metrics and PV energy fore-

casts to dynamically adjust streaming configurations and data rates,

ensuring Pareto-optimality even in volatile weather conditions.

4 Sonar Data Preprocessing and Wrangling

4.1 Denoising and Background Removal

As a default approach in sonar analytics, converting acoustic in-

tensity measurements to a grayscale frame facilitates the use of

image processing and computer vision techniques. This conversion

results in a single-channel image representation, where each pixel

value corresponds to the intensity of the sonar return at that lo-

cation. Such a representation is essential for leveraging existing

DNN-based detection and tracking models, which are typically

designed for processing visual data.

A common approach for preprocessing these grayscale sonar

images involves the application of Gaussian blur [8]. Gaussian blur

smooths the image by reducing high-frequency noise, which is often

prevalent in sonar data due to various environmental and sensor-

related factors. This process helps in enhancing the detection of

significant features and objects by suppressing noise that might

otherwise lead to performance degradation in downstream tasks.

In the context of background subtraction, state-of-the-art ap-

proaches [15] involve computing the average of all frames in the

sonar clips and subtracting this average from each frame. This

approach, known as frame differencing with mean subtraction,

effectively highlights moving objects while suppressing static back-

ground elements. However, this method has notable limitations

when applied to real-time settings. The requirement to maintain

and process the entire sonar clips to compute the average frame

is computationally intensive and may not be feasible in scenarios

where real-time processing is essential.

In our work, we propose several real-time steps to address these

challenges. First, we use theMixture of Gaussians (MOG)method [33]

to differentiate between foreground and background in sonar frames.

MOG is computationally efficient, dynamically updates with each

frame, and can handle speckle noise, reverberations, and acoustic

shadows by modeling each pixel as a mixture of Gaussian distribu-

tions. This allows it to separate random fluctuations from the stable

background and adapt to the varying patterns of reverberations

and shadows, minimizing their impact on detection performance.

Mathematically, the MOG model is formulated as follows:

𝑝 (𝑥) =
𝐾∑

𝑘=1

𝜋𝑘N(𝑥 | 𝜇𝑘 , Σ𝑘 )

where 𝑝 (𝑥) is the probability of a pixel value 𝑥 , 𝐾 is the num-

ber of Gaussian components, 𝜋𝑘 are the mixing coefficients with∑𝐾
𝑘=1 𝜋𝑘 = 1 and 𝜋𝑘 ≥ 0, and N(𝑥 | 𝜇𝑘 , Σ𝑘 ) represents the Gauss-

ian distribution with mean 𝜇𝑘 and covariance Σ𝑘 . The parameters

𝜇𝑘 , Σ𝑘 , and 𝜋𝑘 are continuously updated based on incoming pixel

values, allowing the model to adapt to new background conditions

dynamically. The update steps for the parameters are as follows:

1. Mean (𝜇𝑘 ):

𝜇 (𝑡+1)
𝑘

= (1 − 𝛼)𝜇
(𝑡 )
𝑘

+ 𝛼𝑥𝑡

2. Covariance (Σ𝑘 ):

Σ(𝑡+1)
𝑘

= (1 − 𝛼)Σ
(𝑡 )
𝑘

+ 𝛼 (𝑥𝑡 − 𝜇
(𝑡+1)
𝑘

) (𝑥𝑡 − 𝜇
(𝑡+1)
𝑘

)𝑇

3. Weight (𝜋𝑘 ):

𝜋
(𝑡+1)
𝑘

= (1 − 𝛼)𝜋
(𝑡 )
𝑘

+ 𝛼𝑀𝑘
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(a) (b)

(c) (d)

Figure 6: Channels: (a) original, (b) guided filtered, (c)

guided MOG, (d) edge preservation after applying Canny

edge detector [4].

Herein, 𝛼 is the learning rate, 𝑥𝑡 is the current pixel value at time

𝑡 , and 𝑀𝑘 is an indicator function that equals 1 for the matched

Gaussian 𝑘 and 0 otherwise.

In addition, the MOG approach is particularly well-suited for our

context, as it effectively handles the dynamic nature of sonar data,

where background conditions change rapidly due to factors such

as water currents or the movement of mobile organisms. By con-

tinuously updating the Gaussian parameters, MOG adapts to these

variations, ensuring an accurate background model and enabling

robust foreground differentiation.

4.2 Hedging Design in Channel Population

Furthermore, we propose a novel hedging design to effectively

utilize background removal data from MOG outputs for sonar an-

alytics. Leveraging original sonar frames and MOG outputs, this

design populates three data channels to fit the RGB format used by

existing DNN detection models. We show an illustration example

in Figure 6. The first channel (Figure 6a) is the original sonar frame,

(a) (b)

Figure 7: Channel population: (a) visualizing converted

three channels, (b) motion detection results.

preserving the raw intensity data. The second and third channels

(Figures 6b and 6c) undergo guided filtering, but with different

guiding images, to enhance the differentiation between noises and

acoustic shadows.

The guided filter [11] is an edge-preserving smoothing technique

that leverages a guidance image to perform filtering. Mathemati-

cally, the guided filter can be defined as follows: Given an input

image 𝐼 and a guidance image 𝐺 , the output image 𝑄 is computed

by minimizing the following cost function for each window 𝜔 𝑗
centered at pixel 𝑗 :

𝐸 (𝑎 𝑗 , 𝑏 𝑗 ) =
∑
𝑖∈𝜔 𝑗

(
(𝐼𝑖 − (𝑎 𝑗𝐺𝑖 + 𝑏 𝑗 ))

2 + 𝜖𝑎2𝑗

)

where 𝑎 𝑗 and 𝑏 𝑗 are the linear coefficients that fit the guidance

image 𝐺 to the input image 𝐼 within the window 𝜔 𝑗 , and 𝜖 is a

regularization parameter to prevent overfitting.

The solution to this minimization problem yields the coefficients:

𝑎 𝑗 =

1
|𝜔 𝑗 |

∑
𝑖∈𝜔 𝑗

𝐺𝑖 𝐼𝑖 − 𝜇𝑘 𝐼 𝑗

𝜎2𝑗 + 𝜖

𝑏 𝑗 = 𝐼 𝑗 − 𝑎 𝑗 𝜇 𝑗

where 𝜇 𝑗 and 𝜎
2
𝑗 are the mean and variance of 𝐺 in the window

𝜔 𝑗 , and 𝐼 𝑗 is the mean of 𝐼 in the same window. The output image

𝑄 is then computed as:

𝑄𝑖 = 𝑎 𝑗𝐺𝑖 + 𝑏 𝑗
In our design, the second channel uses the original sonar frame

as the input image 𝐼 and the MOG foreground result as the guidance

image 𝐺 . This configuration helps to highlight features that are

consistent with the foreground, reducing noise and emphasizing

significant sonar returns.

The third channel reverses this relationship: the MOG fore-

ground result becomes the input image 𝐼 , and the original sonar

frame serves as the guidance image𝐺 . This setup enhances features
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Figure 8: DNN architecture for on premise inference.

that differ from the foreground model, effectively isolating moving

objects and suppressing static elements.

This hedging strategy leverages the strengths of both configu-

rations. The first guided filter (original as input, MOG as guide)

emphasizes foreground consistency, which helps to suppress noise

and highlight significant features. The second guided filter (MOG

foreground as input, original as guide) isolates moving objects, dif-

ferentiating them from static background elements. Together, these

channels preserve the edges of objects (Figure 6d) and provide a

robust representation (Figure 7a) that is well-suited for DNN-based

detection models. We further propose a motion detection solution

by using the converted three channels as input for Canny edge

detection. This approach, performed in real time, serves as an effec-

tive motion detector that is resilient to noise. The motion detector

helps to reduce the number of frames that need to be processed

in subsequent stages, significantly reducing the processing and

transmission load. An example of the identified prominent edges

can be seen in Figure 7b.

5 DNN Model Adaptation

5.1 On Premise Inference with CNN

Using Convolutional Neural Networks (CNN) for sonar data detec-

tion provides a robust solution for real-time analysis. As suggested

in [15], such models as YOLO [13], Faster R-CNN [30], and SSD [23],

designed for rapid object detection, align well with the demands of

sonar applications, where swift and accurate identification of ob-

jects is critical. These models’ inherent capability to handle various

data types ensures efficient processing of sonar signals and reliable

detection results once adapted.

We adopt YOLOv8 as our base model for on-premise inference,

using our converted 3-channel input. As shown in Figure 8, YOLOv8

integrates features from previous versions, including Multi-Scale

Predictions (v3), PANet (v4), and the Efficient Layer Aggregation

Network (ELAN) (v7), while introducing the c2f block for improved

feature extraction and aggregation. Its anchor-free architecture

reduces candidate bounding boxes, effectively minimizing false

positives in object detection for live sonar analytics.

Additionally, the lightweight architecture of YOLOv8 ensures

low latency and rapid inference, making it ideal for deployment

on edge devices such as the Jetson Orin Nano [27]. These devices

are optimized for edge AI applications, offering the necessary com-

putational power while maintaining low energy consumption and

Figure 9: The architecture of Spatial-Temporal Sonar Vision

Transformer (STSVT).

thermal efficiency. This makes YOLOv8 an excellent choice for on-

premise inference, offering immediate feedback, low energy usage,

and resilience to occasional network outages in the wild.

5.2 Cloud Inference with Adapted
Spatial-Temporal Transformer

We then introduce the design of the Spatial-Temporal Sonar Vision

Transformer (STSVT) for cloud inference.

Recent trends in object detection have adopted Transformer

architectures to eliminate predefined anchor boxes and many hand-

designed components such as non-maximum suppression (NMS),

resulting in significant performance improvements [5, 45, 46]. De-

formable DETR [46] uses an attention mechanism to aggregate

multi-scale feature maps, enhancing model generalization at differ-

ent scales. However, our preliminary experiments show that noises,

acoustic shadows, and reverberations in sonar frames weaken pixel

correlation, negatively impacting the Transformer’s point-to-point

attention mechanism. To address this, incorporating temporal infor-

mation between frames proves beneficial, as it improves the model’s

resilience to noise and allows it to better track moving objects. Ac-

cordingly, our adapted Spatial-Temporal Sonar Vision Transformer

(STSVT) introduces the following two major components:

Spatial Transformer. We choose the recently proposed De-

formable DETR as our still frame detector. To simplify the design,

we do not use multi-scale feature representations in either the en-

coders or decoders of the spatial transformer. Instead, we use only

the last stage of the backbone as the input to reduce the complexity.

As shown in Figure 9, the modified detector includes a spatial Trans-

former encoder and a spatial Transformer decoder, which encodes

each frame (including the previous reference frame and current
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Figure 11: Satellite power consumption and pre-

cipitation amount correlations.

frame) into two compact representations: spatial object query and

memory encoding.

Temporal Transformer. The temporal transformer first en-

codes the spatial details from multiple frames, aggregating this

spatial information via a temporal deformable attention mecha-

nism. It then fuses object queries from multiple adjacent frames,

selecting relevant object queries and combining them through sev-

eral self-attention layers. With these intermediate outputs, it then

generates detection results. As shown in Figure 9, we introduce

additional encoder-decoder architecture to encode information be-

tween frames using memory and object queries.

The primary difference between our Spatial-Temporal Sonar Vi-

sion Transformer (STSVT) and existing models lies in the extensive

utilization of temporal information between frames. This is particu-

larly crucial for detecting moving objects in sonar data. We set the

model to process multiple frames (ranging from 2 to 16) to better

capture the displacement information of underwater objects. By

doing so, the model can more effectively detect and track moving

objects, even in varying underwater conditions.

6 Sonar Streaming and Energy Planning

When both on-premise and cloud resources are available, cloud

inference is preferred for better sonar analytics performance. How-

ever, this presents challenges related to data transmission and en-

ergy planning. For instance, at one sonar site relying on solar

power and satellite communication (e.g., Starlink) for real-time

sonar streaming and cloud inference, the lack of a proper energy

plan led to a power overload. During peak transmission, the Starlink

Figure 12: Volatile weather patterns such as sudden storms

and fluctuating cloud cover. From left to right: cumulus,

altocumulus, cirrocumulus, and nimbostratus.

Figure 13: Volatile weather patterns, 4-hour window forecast.

We use a more fine-grained image-based forecast method.

dish consumed up to 200 Watts, double that of the sonar radar sys-

tem’s 100Watts, resulting in unexpected contingency costs to repair

the power breaker. Additionally, the site uses rechargeable batteries

to support overnight operations, but continuous Starlink usage

sometimes depleted the battery, causing system outages. These in-

cidents emphasize the need for careful coordination between sonar

streaming and energy planning to ensure sustainable operations.

Supporting cloud inference in remote ecosystems, where solar

power is often the primary energy source and satellite commu-

nication serves as the main network connection, requires careful

planning. Adverse weather conditions such as rain, sudden storms,

and fluctuating cloud cover can disrupt satellite connectivity and

reduce solar power efficiency. To address these challenges, we pro-

pose a joint design for sonar streaming and energy planning. The

design is based on our observations of how weather conditions

impact network connectivity and power availability, and ensure

continuous and efficient operations in volatile wild environments.

6.1 Weather Impact on Satellite Streaming
Connectivity

We have observed that Starlink’s throughput can be significantly

affected by weather conditions. As shown in Figure 10, our results

indicate an inverse correlation between throughput and precip-

itation amount. Specifically, throughput drops by an average of

15% during any form of precipitation. Throughput is particularly

constrained during heavy rain events (> 4 mm per hour), affecting

both downloads and uploads. The primary cause of this decrease in

throughput is rain attenuation. Ka- and Ku-band radio waves, which

are used by Starlink, are particularly susceptible to degradation in

the presence of rain. The attenuation of these radio waves leads to

a significant reduction in the signal quality received by the satellite

terminals. Additionally, the presence of clouds can further interrupt

data communications. Even light clouds can reduce satellite signal
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(a) (b) (c) (d)

Figure 14: Fisheye lens monitoring of volatile weather pat-

terns: (a) clear sky, (b) sparse, (c) thick, (d) full.

strength by approximately 10%, with thicker clouds associated with

heavy rainfall further obstructing the network paths in both uplinks

and ground-satellite links.

We also find that when streaming sonar data, the current dish’s

power consumption averages around 51.3 Watts but can go as

high as 166.5 Watts, with the dish’s power consumption positively

correlated with precipitation. We present the density analysis in

Figure 11. It is clear that, without rain, power consumption is lower

in general, with occasional spikes due to other factors such as tuning

the dish direction or establishing connections with farther away

satellites. When there is rain or heavy clouds, power consumption

becomes persistently higher, likely due to the interference from the

rain or clouds.

6.2 Sustainable Energy Planning

In parallel, solar PV energy production is also highly sensitive to

weather conditions. Solar panels generate electricity based on the

amount of sunlight they receive, which can be drastically reduced

by cloud cover, rain, or snow. Figures 12 and 13 show the volatile

weather patterns on-site, highlighting the sudden changes and

fluctuating cloud cover. The variability in solar energy production

necessitates the need for efficient energy management strategies to

ensure a stable power supply and limit peak energy use, especially

in off-grid setups in wild ecosystems.

We utilize a short-term PV output forecast model [26] that learns

a mapping from the sky image to future PV power output. This

mapping is trained on fisheye lens images. Several examples are

shown in Figure 14. These sky images are frames captured by a

6-megapixel 360-degree fish-eye Hikvision DS-2CD6362F-IV27 cam-

era. This network camera is a cost-effective, low-power option (15

Watts) for sky monitoring. It captures at 2048 × 2048 pixels reso-

lution at 20 fps. The PV output generation data are logged with a

1-minute frequency and are minutely averaged. To further optimize

performance, we fine-tune the forecast model using our captured

sky images and power data from three 300W PV modules with

18.6% efficiency, a typical configuration for powering sonar sites in

wild ecosystems.

6.3 Multi-Stratum Streaming Optimization

Sonar frames are usually rectangular with a high height-width

ratio, which poses a challenge for efficient streaming and process-

ing. In this work, we explore a multi-stratum streaming mecha-

nism by splitting the rectangle into multiple near-square strata,

each streamed with different configurations. This approach im-

proves streaming efficiency and detection performance. Another

compelling argument for performing multi-stratum streaming is

the significant impact of frame aspect ratio on inference results.

Figure 15: An example of a 3-stratum split in sonar frame.

Using images with an aspect ratio close to a square, rather than a

significant width-height difference, leads to better detection per-

formance. When images are resized to fixed sizes (e.g., 416x416

or 640x640) as inputs, large aspect ratio differences can cause dis-

tortion, negatively affecting the detection models’ ability to learn

object features accurately. Square-like images minimize this dis-

tortion, maintaining the target objects’ original proportions and

improving detection accuracy, which is crucial since many objects

in sonar frames are thin and long. Additionally, CNN models pro-

cess images at a uniform scale, so near-square images ensure an

even distribution of computational resources, enhancing efficiency

and effectiveness.

As shown in Figure 15, we propose a multi-stratum streaming

framework that integrates satellite connectivity metrics and PV en-

ergy production forecasts to adjust streaming configurations, such

as downscaling factors, framerates, and preprocessing filters, all of

which impact final data rates. This approach allows for dynamic

adjustment of both internet usage and energy consumption based

on current and forecast conditions.

We formulate the multi-stratum streaming optimization problem

as follows: consider a sonar stream that is segmented into 𝑁 strata.

Each stratum 𝑖 ∈ [1, . . . , 𝑁 ] introduces a set of control parame-

ters 𝑠𝑖, 𝑗 . A configuration consisting of 𝑀 selections for stratum

𝑖 is 𝑐 = [𝑠1,1, 𝑠1,2, 𝑠1,𝑀 , . . . , 𝑠𝑖,𝑀 ], representing a specific combina-

tion of these control parameters. The set of all configurations is

denoted by S. For any given configuration 𝑐 , we define three criti-
cal metrics: the bandwidth usage 𝐵(𝑐), the analytics performance

𝐴(𝑐), and the power consumption 𝑃 (𝑐). The goal of profiling is to
identify configurations that are Pareto-optimal. A configuration 𝑐
is considered Pareto-optimal if there is no other configuration 𝑐′

that simultaneously uses less bandwidth, less power, and achieves

higher analytics performance. Formally, the set of Pareto-optimal

configurations P is defined as follows:

P =
{
𝑐 ∈ S : � 𝑐′ ∈ S such that𝐵(𝑐′) < 𝐵(𝑐), 𝑃 (𝑐′) < 𝑃 (𝑐),

and 𝐴(𝑐′) > 𝐴(𝑐)
} (1)

To solve the optimization problem, we first identify the key con-

figurations that impact sonar analytics, such as frame size scaling

factor, frame rate, and power-related operations. By focusing on

these parameters, we can limit the search space for efficient comput-

ing. To achieve this, we discretize the parameter space and evaluate

all possible combinations. Specifically, we employ an exhaustive

search over the discrete parameter space to identify Pareto-optimal

configurations. However, if the parameter space were to be treated
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Table 1: YOLOv8x with different inputs.

Metrics Raw Channel CFC Channels Our Channels

AP IoU=0.50 0.834 0.862 0.876 (+0.014)

AP IoU=0.50:0.95 0.407 0.423 0.451 (+0.023)

Precision 0.895 0.901 0.909 (+0.008)

Recall 0.766 0.788 0.805 (+0.017)

val/box_loss 1.631 1.598 1.550 (-0.048)

val/class_loss 1.049 0.976 0.892 (-0.084)

Table 2: STSVT with different inputs.

IoU Area MaxDet Raw CFC Ours

AP 0.50 all 100 0.507 0.574 0.591 (+0.017)

AP 0.50:0.95 all 100 0.155 0.189 0.219 (+0.030)

AP 0.75 all 100 0.048 0.055 0.107 (+0.052)

AP 0.50:0.95 small 100 0.075 0.089 0.110 (+0.021)

AP 0.50:0.95 medium 100 0.201 0.242 0.444 (+0.202)

AP 0.50:0.95 large 100 0.314 0.424 0.826 (+0.402)

AR 0.50:0.95 all 1 0.133 0.155 0.186 (+0.031)

AR 0.50:0.95 all 10 0.233 0.278 0.327 (+0.049)

AR 0.50:0.95 all 100 0.267 0.314 0.357 (+0.043)

AR 0.50:0.95 small 100 0.146 0.204 0.210 (+0.006)

AR 0.50:0.95 medium 100 0.338 0.379 0.444 (+0.065)

AR 0.50:0.95 large 100 0.328 0.420 0.880 (+0.460)

as continuous, more advanced search techniques [9, 16] would be

necessary to efficiently navigate the vast search space.

6.4 Continuous Operation

In our streaming optimization, the bandwidth constraint is deter-

mined through continuous monitoring of the Starlink connection,

ensuring that the selected configurations do not exceed the available

bandwidth. Similarly, the power consumption constraint consid-

ers both current energy production and future forecasts. These

forecasts are used to estimate energy availability over upcoming

periods, ensuring that the chosen configuration remains sustainable

over the forecasted timeframe. This approach effectively prevents

unexpected shutdowns or system outages due to energy depletion.

It is noted that in the current system design, we have accounted for

sufficient safety margins for rechargeable battery power to support

overnight operations. Specifically, energy planning is conducted

during the day when energy is more abundant, and configurations

are aware of reserving additional energy during adverse weather

conditions or low energy production. This ensures that the sys-

tem maintains continuous and stable operations throughout the

night. Thus, even under constrained energy conditions, our system

remains reliable during the overnight period.

7 System Evaluations

7.1 Implementation and Configuration

We collaborated closely with biologists, forest technologists, and

electricians to set up the system for continuous monitoring and

surveillance at two different rivers in British Columbia, Canada:

YK River and KN River. At YK River, we used the ARIS Explorer

1800 Sonar, which has an effective detection range of 35 meters.

While at KN River, we employed the ARIS Explorer 3000 Sonar,

with a detection range of 15 meters. The edge device used was a
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Figure 16: Motion detection results.

Table 3: Comparison of CFC and STSVT.

Metrics AP IoU=0.50 AP IoU=0.50:0.95 val/box_loss

CFC 0.640 0.271 2.173

STSVT 0.735 (+0.095) 0.334 (+0.063) 0.251 (-1.922)

Jetson ORIN Nano 8GB. Onsite solar power was provided by three

300W 18.6% efficiency Q. Peak-G4.1 PV modules. The cloud server

setup included a Lambda Vector Server equipped with four A5000

GPUs. The system was deployed for six months, monitoring un-

derwater environments. As noted in Section 3.2, we also employed

a third-party annotation service to label multiple object-tracking

annotations for all objects in the converted grayscale sonar clips,

including salmon, otter, and smolt. These annotations were used for

training and fine-tuning the models, ensuring reliable performance.

7.2 Channel Population Impacts

We used our channel population results for training and validating

on the YK dataset, comparing sonar raw channel, CFC channels

( [15], considered as SOTA), and our channels. As shown in Ta-

ble 1, our channels consistently outperformed both the raw and

CFC channels across all metrics. Average Precision (AP) at IoU 0.50

improved from 0.834 (raw) and 0.862 (CFC) to 0.876 with our chan-

nels. AP at IoU 0.50:0.95 increased from 0.407 (raw) and 0.423 (CFC)

to 0.451. Validation losses for bounding boxes and classification

were also reduced significantly with our channels. All these results

demonstrate the superior performance of our channel population

method, highlighting its efficacy in enhancing sonar data detection.

Similarly, the experiment results presented in Table 2 show a

comprehensive comparison of average precision (AP) and average

recall (AR) metrics with different inputs: Raw, CFC, and Ours. This

experiment was conducted using Spatial-Temporal Sonar Vision

Transformer (STSVT) as the detector on the KN river dataset, which

is more challenging. Note in this figure, "small" refers to objects

smaller than 32 × 32 pixels, "medium" refers to objects between

32 × 32 and 72 × 72 pixels, and "large" refers to objects larger than

72×72 pixels. "MaxDet" refers to themaximumnumber of detections

considered per frame during evaluation.

On this dataset, our YOLOv8x model running on edge only

achieves below 0.4 in AP IoU=0.5. When using STSVT, our channel

inputs consistently outperform both the raw and CFC channels

across all evaluated metrics. Specifically, when examining AR met-

rics, our method again demonstrates superior performance. For

instance, AR at IoU=0.50:0.95 for all areas with MaxDets=100 is

0.357 with our method, compared to 0.267 for the raw channel and

0.314 for the CFC channels. Notably, our method’s AR for large
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Table 4: On-premise and cloud inference comparison.

Stratum Model Format Param Where GPU AP IoU=0.50 val/box_loss Edge Power Transmission Power Power Sum

1
YOLOv8m TensorRT 25.84M Edge Ampere 0.379 1.581 9.34W N/A 9.34W
STSVT default 53.47M Cloud A5000 0.507 0.202 5.35W 45.48W 50.83W

2
YOLOv8m TensorRT 25.84M Edge Ampere 0.414 1.314 9.68W N/A 9.68W
STSVT default 53.47M Cloud A5000 0.574 0.169 5.74W 47.55W 53.39W

objects (> 72px × 72px) with MaxDets=100 reaches an impressive

0.880. Since most real-world objects of interest in sonar frames are

larger than this threshold, this highlights our method’s exceptional

ability to detect and recall.

We present motion detection results based on Canny edge de-

tectors over our populated channel, comparing Precision, Recall,

and F1 Score in Figure 16. To ensure no objects were missed, we

tuned the Canny parameter to prioritize high Recall. The results

on the YK river and KN river datasets also show the saving ratio,

indicating the proportion of non-motion frames that do not need

processing or uploading. This helps save processing resources and

reduces network transmission requirements.

7.3 Detection Performance

Table 3 compares the performance of CFC and STSVT methods on

the KN river dataset using AP and validation loss metrics. STSVT

achieves an AP of 0.735 at IoU=0.50, showing a significant 0.095

improvement over CFC’s 0.640. For AP at IoU=0.50:0.95, STSVT

outperforms CFC by 0.063, reaching 0.334. Additionally, STSVT sig-

nificantly reduces validation bounding box loss to 0.251, a decrease

of 1.922 from CFC’s 2.173, indicating improved prediction accuracy

and model effectiveness across different IoU thresholds.

Table 4 provides a comparison of on-premise edge inference

and cloud inference across different configurations. When a single

frame is considered as one stratum, edge inference with YOLOv8m

shows lower power consumption (9.34W) but lower precision com-

pared to cloud inference with STSVT, which achieves a higher AP

at IoU=0.50 (0.507) at a significantly higher power cost (50.83W)

due to additional transmission power over Starlink. In the scenario

where the frame is split into two square strata, YOLOv8m at the

edge again consumes less power (9.68W) compared to cloud in-

ference with STSVT (53.39W), which shows improved precision

but at the cost of increased power consumption due to cloud trans-

mission. This demonstrates that while cloud inference enhances

model performance, edge inference remains more energy-efficient

for scenarios where power consumption is a critical factor.

The results in Table 5 compare the cloud models and edge models

in terms of inference time. For edge deployment, the YOLOv8m

model in TensorRT format offers the fastest inference at 65.3 ms,

supporting real-time processing at around 15 fps. In contrast, cloud

deployment using the A5000 GPU drastically reduces inference

times, with the YOLOv8m and YOLOv8x models achieving 8.59 ms

and 9.17 ms, respectively, suitable for frame rates up to 60 fps. The

STSVT model, although slower at 56.1 ms, still supports real-time

processing at 15 fps. These speeds confirm that both edge and cloud

deployments of SALINA can handle sonar analytics in real time,

with cloud solutions offering higher frame rate capabilities.

Table 5: Inference time comparison.

Model Format Param Where GPU Inference Time

YOLOv8m default 25.84M Edge Ampere 81.7 ± 8.15ms
YOLOv8m ONNX 25.84M Edge Ampere 78.6 ± 7.30ms
YOLOv8m TensorRT 25.84M Edge Ampere 65.3 ± 5.72ms

YOLOv8x default 68.2M Cloud A5000 9.17 ± 1.13ms
YOLOv8m default 25.84M Cloud A5000 8.59 ± 0.92ms
STSVT default 53.47M Cloud A5000 56.1 ± 10.0ms
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Figure 17: HOTA, MOTA, and IDF1 comparison.

7.4 Tracking Performance

We further evaluate multi-object tracking performance, where our

channel inputs demonstrate superior results compared to both the

raw and CFC channels. The experiments were conducted on the

KN river dataset.

The trackingmetrics compared in our experiments areHOTA [24],

MOTA [2], and IDF1 [31]:

• HOTA (Higher Order Tracking Accuracy) evaluates the bal-

ance between object detection and association performance,

incorporatingmetrics such as detection accuracy, association

accuracy, and localization accuracy.

• MOTA (Multiple Object Tracking Accuracy) measures over-

all tracking performance by accounting for false positives,

false negatives, and identity switches. It emphasizes detec-

tion quality and is widely used in tracking benchmarks.

• IDF1 evaluates the accuracy of maintaining consistent object

identities over time.

As shown in Figure 17, we achieved a HOTA score of 50.868,

indicating higher accuracy in tracking objects over time, compared

to 49.983 for CFC and 40.072 for the raw channel. In terms of MOTA,

our channel inputs also excel, with a score of 65.966, surpassing

CFC’s 64.286 and the raw channel’s 58.824. Additionally, our chan-

nel inputs maintain object identities exceptionally well, as evi-

denced by an IDF1 score of 80.941, which is higher than CFC’s

79.714 and significantly better than the raw channel’s 66.5. These

results, with a relative increase of 10.1%, confirm the effectiveness

of our channel inputs in delivering more accurate and reliable multi-

object tracking performance.
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(a) Raw (b) CFC (c) Ours

Figure 18: Tracking Performance Breakdown.

We present a detailed tracking performance breakdown in Fig-

ure 18, showing six components of the HOTAmetric: DetA, measur-

ing single-frame detection accuracy; AssA for cross-frame associa-

tion accuracy; DetRe and DetPr for detection recall and precision;

and AssRe and AssPr for association recall and precision. We varied

the alpha parameter in HOTA to adjust the emphasis between detec-

tion and association, illustrating how changes in alpha impact each

metric. The evaluation results demonstrate that our channel input

outperforms both the Raw channel and state-of-the-art CFC chan-

nels, with improvements across detection and association metrics,

highlighting the efficacy of our novel channel population pipeline.

7.5 Sustainable Streaming Performance

In Figure 19, we show short-term solar PV power forecasts on one

day. We use Root Mean Square Error (RMSE) in kWs and Mean

Absolute Error (MAE) in kWs as forecast metrics. During our de-

ployment period, on sunny days, the RMSE is 0.25 kW and the MAE

is 0.22 kW on average. On cloudy days, the RMSE is 0.37 kW and

the MAE is 0.32 kW on average. cloudy days occur more frequently

than sunny days, we use a weighted average to estimate the overall

RMSE and MAE. Overall, the RMSE is 0.33kW and the MAE is 0.29

kW. We optimize detection performance under varying conditions

using Pareto front optimization to balance power and bandwidth

constraints. Considering the impact of volatile weather on energy

and connectivity, we incorporate energy forecasts and real-time

bandwidth monitoring to ensure efficient operation even in adverse

conditions. Figure 20 shows the Pareto front from our YK river and

KN river datasets, noting that the z-axis represents the normalized

detection performance metric ranging from 0 to 1. This is bounded

by power consumption and satellite network connectivity. The re-

sults demonstrate the optimal trade-offs between power, bandwidth,

and performance in real-world experiments.

8 Further Discussion

Scalability of SALINA. Scalability is a critical aspect of the SALINA

system, ensuring its deployment across various remote wild ecosys-

tems with minimal adjustments. The modular design of SALINA

allows for seamless integration of additional sonar units and edge

devices. By leveraging cloud-based resources, the system can dy-

namically allocate computational power and storage based on real-

time demand [10, 40, 42], thereby supporting larger deployments

(a) Sunny Day

(b) Cloudy Day

Figure 19: Short-term solar PV power forecast.

without compromising performance. Furthermore, the use of con-

tainerized microservices enables easy replication and distribution of

processing tasks across multiple machines, ensuring load balancing

and fault tolerance [41]. This scalability is essential for long-term

monitoring and large-scale studies.

Integration with large language models and vision lan-

guage models. Incorporating large language models (LLMs) and

vision language models (VLMs) enhances SALINA’s analytical capa-

bilities, enabling sophisticated data interpretation and interaction.

LLMs, such as GPT-4o [28], Llama 3 [35], can assist in generating

comprehensive reports, translating raw sonar data into actionable

insights, and facilitating seamless communication between techni-

cal and non-technical stakeholders. Meanwhile, VLMs [20, 21, 29],

which combine visual and linguistic data processing, can improve
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Figure 20: Pareto front at YK River and KN River.

the accuracy and contextual understanding of sonar imagery. These

models can annotate sonar data with rich descriptive metadata, im-

proving the semantic understanding of detected objects and events.

This integration is promising for advanced applications such as

automated anomaly detection, behavioral analysis, and interactive

query-based data exploration, further extending the utility of the

SALINA system.

Implications on related applications. SALINA can be adapted

for diverse remote monitoring scenarios, such as tracking endan-

gered species, assessing water quality, or supporting flood early-

warning systems. For instance, deploying SALINA in flood-prone

river basins could enable continuous monitoring of water levels,

flow rates, and underwater sediment movements. By integrating

with local hydrological sensors, SALINA can provide real-time

data to detect rising water levels or sudden changes in flow pat-

terns, offering an early indication of potential flooding events. This

real-time feedback would allow authorities to issue timely alerts,

evacuate at-risk areas, and implement mitigation strategies.

9 Conclusion

In this paper, we presented SALINA, a sustainable live sonar analyt-

ics system designed for deployment in wild ecosystems. Our system

addresses key challenges such as the absence of relevant datasets

and models, the need for real-time processing under resource con-

straints, and the integration of sustainable energy sources. SALINA

incorporates advanced data preprocessing, tailored DNN models

for both on-premise and cloud inference, and optimizing network

performance and power use. Through extensive real-world deploy-

ments and evaluations, our results indicate that SALINA can ef-

fectively support continuous underwater surveillance and provide

valuable insights for wildlife monitoring and resource management.

The methodologies and findings reported in this study offer a com-

prehensive framework for deploying similar acoustic data analytics

systems in various challenging environments.
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