Diffusion Inversion
DDIM Deterministic Sampling
if $\sigma_t = 0$ for all t, \(x_{t-1} = \sqrt{\frac{\bar{\alpha}_{t-1}}{\bar{\alpha}_t}} \left( x_t - \sqrt{1 - \bar{\alpha}_t} \, \hat{\epsilon}_\theta(x_t, t) \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \, \hat{\epsilon}_\theta(x_t, t) \\[8pt] = \sqrt{\bar{\alpha}_{t-1}} \left[ \sqrt{\frac{1}{\bar{\alpha}_t}} x_t + \left( \sqrt{\frac{1}{\bar{\alpha}_{t-1}}} - 1 - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \hat{\epsilon}_\theta(x_t, t) \right]\)
The mapping from $x_T$ to $x_0$ is basically be fixed.
DDIM Inversion
Inverse mapping from $x_0$ to $x_T$ to find the latent space of the $x_0$

Key idea: For the forward process with small time intervals, approximate ( $x_{t+1} - x_t$) by simply replacing $(t -1)$ with $(t+1)$:
\[x_{t-1} - x_t = \sqrt{\bar{\alpha}_{t-1}} \left[ (\sqrt{\frac{1}{\bar{\alpha}_t}} - \sqrt{\frac{1}{\bar{\alpha}_{t-1}}}) x_t + \left( \sqrt{\frac{1}{\bar{\alpha}_{t-1}}} - 1 - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \hat{\epsilon}_\theta(x_t, t) \right]\] \[x_{t+1} - x_t = \sqrt{\bar{\alpha}_{t+1}} \left[ (\sqrt{\frac{1}{\bar{\alpha}_t}} - \sqrt{\frac{1}{\bar{\alpha}_{t+1}}}) x_t + \left( \sqrt{\frac{1}{\bar{\alpha}_{t+1}}} - 1 - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \hat{\epsilon}_\theta(x_t, t) \right]\]Inversion fails when the number of time steps is too small (when the time intervals are too large)
Image Editing using DDIM inversion

- Perform DDIM inversion using the original prompt in CFG
- Perform reverse processing using a new prompt in CFG
However, inversion tends to fail when CFG weight w is high:
Null-Text Inversion
This method can solve the issue above: Only Null-text $\emptyset$ be tuned


Enjoy Reading This Article?
Here are some more articles you might like to read next: