Jacobian matrix
Keywords:
- 泰勒展开
- 线性逼近
目的:
- 可以把非线性变换模拟成一个线性变化
坐标变换:
- $f_1(x) = x + \sin(y)$
- $f_2(y) = y + \sin(x)$
Jacobian matrix:
\[\mathbf{J_f} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^\top f_1 \\ \vdots \\ \nabla^\top f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}\] \[J = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & \cos(y) \\ \cos(x) & 1 \end{bmatrix}\]理解:对非线形变换的局部线性性近似。

Enjoy Reading This Article?
Here are some more articles you might like to read next: